Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Curr Pharm Des ; 29(16): 1274-1292, 2023.
Article in English | MEDLINE | ID: covidwho-2324532

ABSTRACT

BACKGROUND: Patients with gastric cancer (GC) are more likely to be infected with 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the prognosis is worse. It is urgent to find effective treatment methods. OBJECTIVE: This study aimed to explore the potential targets and mechanism of ursolic acid (UA) on GC and COVID-19 by network pharmacology and bioinformatics analysis. METHODS: The online public database and weighted co-expression gene network analysis (WGCNA) were used to screen the clinical related targets of GC. COVID-19-related targets were retrieved from online public databases. Then, a clinicopathological analysis was performed on GC and COVID-19 intersection genes. Following that, the related targets of UA and the intersection targets of UA and GC/COVID-19 were screened. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome Analysis (KEGG) pathway enrichment analyses were performed on the intersection targets. Core targets were screened using a constructed protein-protein interaction network. Finally, molecular docking and molecular dynamics simulation (MDS) of UA and core targets were performed to verify the accuracy of the prediction results. RESULTS: A total of 347 GC/COVID-19-related genes were obtained. The clinical features of GC/COVID-19 patients were revealed using clinicopathological analysis. Three potential biomarkers (TRIM25, CD59, MAPK14) associated with the clinical prognosis of GC/COVID-19 were identified. A total of 32 intersection targets of UA and GC/COVID-19 were obtained. The intersection targets were primarily enriched in FoxO, PI3K/Akt, and ErbB signaling pathways. HSP90AA1, CTNNB1, MTOR, SIRT1, MAPK1, MAPK14, PARP1, MAP2K1, HSPA8, EZH2, PTPN11, and CDK2 were identified as core targets. Molecular docking revealed that UA strongly binds to its core targets. The MDS results revealed that UA stabilizes the protein-ligand complexes of PARP1, MAPK14, and ACE2. CONCLUSION: This study found that in patients with gastric cancer and COVID-19, UA may bind to ACE2, regulate core targets such as PARP1 and MAPK14, and the PI3K/Akt signaling pathway, and participate in antiinflammatory, anti-oxidation, anti-virus, and immune regulation to exert therapeutic effects.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Mitogen-Activated Protein Kinase 14 , Stomach Neoplasms , Triterpenes , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Network Pharmacology , Angiotensin-Converting Enzyme 2 , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Triterpenes/pharmacology , Triterpenes/therapeutic use
2.
Plant Biotechnol J ; 21(4): 698-710, 2023 04.
Article in English | MEDLINE | ID: covidwho-2254579

ABSTRACT

Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1G146V/I variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1G146V/S and the reported AmGT8 and AmGT8A394F . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.


Subject(s)
COVID-19 , Plants, Medicinal , Saponins , Triterpenes , Astragalus propinquus/chemistry , Astragalus propinquus/genetics , Astragalus propinquus/metabolism , Saponins/chemistry , Saponins/metabolism , Glycosyltransferases/genetics , SARS-CoV-2 , Triterpenes/metabolism , Protein Engineering , Sugars/metabolism
3.
ACS Appl Bio Mater ; 6(2): 652-662, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2185491

ABSTRACT

Coronavirus disease 19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. The virus is highly contagious, affecting millions of people worldwide. SARS-CoV-2, with its trimeric spike glycoprotein, interacts with the angiotensin-converting enzyme 2 (ACE2) receptor and other co-receptors like basigin to invade the host cell. Moreover, certain host proteases like transmembrane serine proteases, furin, neuropilin 1 (NRP1), and endosomal cathepsins are involved in the priming of spike glycoproteins at the S1/S2 interface. This is critical for the entry of viral genome and its replication in the host cytoplasm. Vaccines and anti-SARS-CoV-2 drugs have been developed to overcome the infection. Nonetheless, the frequent emergence of mutant variants of the virus has imposed serious concerns regarding the efficacy of therapeutic agents, including vaccines that were developed for previous strains. Thus, screening and development of pharmaceutical agents with multi-target potency could be a better choice to restrain SARS-CoV-2 infection. Madecassic acid (MDCA) is a pentacyclic triterpenoid found in Centella asiatica. It has multiple medicinal properties like anti-oxidative, anti-inflammatory, and anti-diabetic potential. However, its implication as an anti- SARS-CoV-2 agent is still obscure. Hence, in the present in silico study, the binding affinities of MDCA for spike proteins, their receptors, and proteases were investigated. Results indicated that MDCA interacts with ligand-binding pockets of the spike receptor binding domain, ACE2, basigin, and host proteases, viz. transmembrane serine proteinase, furin, NRP1, and endosomal cathepsins, with greater affinities. Moreover, the MDCA-protein interface was strengthened by prominent hydrogen bonds and several hydrophobic interactions. Therefore, MDCA could be a promising multi-target therapeutic agent against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Triterpenes , Humans , Angiotensin-Converting Enzyme 2 , Basigin , Cathepsins , COVID-19/prevention & control , Furin , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Triterpenes/pharmacology , COVID-19 Drug Treatment , Computer Simulation
4.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2066272

ABSTRACT

Streptococcus pneumoniae (S. pneumoniae), as a Gram-positive bacterium, can cause severe bacterial pneumonia, and result in high morbidity and mortality in infected people. Meanwhile, isolated drug-resistant S. pneumoniae is growing, which raises concerns about strategies for combatting S. pneumoniae infection. To disturb S. pneumoniae pathogenicity and its drug-resistance, developing novel anti-infective strategies or compounds is urgent. In this study, the anti-infective effect of shionone was explored. A minimum inhibitory concentration (MIC) assay and growth curve determination were performed to evaluate the effect of the tetracyclic triterpenoid compound shionone against S. pneumoniae. Hemolysis tests, western blotting, oligomerization inhibition assays, and molecular docking were carried out to explore the anti-infective mechanism of shionone. Moreover, the protective effect of shionone was also confirmed in a mousepneumonia model. The results showed that the excellent hemolytic inhibitory activity of shionone was observed at less than 8 µg/mL. Meanwhile, shionone could disturb the oligomerization of pneumolysin (PLY) but did not interfere with PLY expression at less than 4 µg/mL. Molecular docking suggested that shionone targeted the ASP-59, ILE-60, THR-57, PHE-344, and ASN-346 amino acid sites to reduce S. pneumoniae pathogenicity. Furthermore, shionone alleviated lung histopathologic injury and decreased lung bacterial colonization in vivo. The above results showed that shionone could bind to the PLY active pocket under the concentrations of 8 µg/mL and neutralize PLY hemolysis activity to reduce S. pneumoniae pathogenicity in vitro and in vivo.


Subject(s)
Acute Lung Injury , Triterpenes , Amino Acids/pharmacology , Bacterial Proteins/metabolism , Hemolysis , Humans , Molecular Docking Simulation , Streptococcus pneumoniae , Streptolysins/metabolism , Streptolysins/pharmacology , Triterpenes/pharmacology
5.
J Ethnopharmacol ; 297: 115528, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-1926631

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The leaves of Eurya chinensis(Chinese Dagang Tea)have been consumed as herbal tea for centuries in Guangdong, China, and have also been used to prevent influenza and treat colds and fevers in traditional Chinese medicine. However, there are no reports on the chemical profile and efficacy of its leaves for the treatment of fever and viral infections. MATERIALS AND METHODS: The chemical constituents of Eurya chinensis leaves were isolated and identified by phytochemical study and spectroscopic data, E. chinensis extracts and compounds were evaluated for their antiviral activities by cytopathic effect (CPE) reduction and antibody-based EC50 assay. The antiviral effect of the main component was confirmed by immunofluorescence and transmission electron microscopy. Virtual screening and docking enzyme inhibition experiments were performed to analyze the anti-coronavirus mechanisms of the compounds from E. chinensis leaves. RESULTS: In this study, we found for the first time that E. chinensis leaf extract exhibited inhibitory effects against coronaviruses HCoV-OC43 in vitro. Among 23 monomer compounds isolated from E. chinensis leaf extract, the triterpenoids (betulinic acid, α-amyrin) and the flavonoids (naringenin, eriodictyol and quercetin) showed marked antiviral activity. Microscopic optical analyses further demonstrated that betulinic acid can remove virus particles from HCoV-OC43 infected cells. Virtual screening and docking analysis towards the coronavirus in vogue revealed that betulinic acid was able to bind well to PLpro and Nsp14N7-MTase, and that the flavonoids prefer to bind with PLpro, Nsp3MES, NspP14N7-MTase, Nsp16GTA, and Nsp16SAM. The enzyme inhibition experiments demonstrated that betulinic acid (1) exhibited significant inhibition of PLpro and N7-MTase activity of SARS-CoV-2. CONCLUSION: This study proposes E. chinensis and its triterpenoids and flavonoids as promising potential treatments for coronaviruses.


Subject(s)
COVID-19 , Camellia sinensis , Triterpenes , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Flavonoids , Plant Extracts/pharmacology , SARS-CoV-2 , Tea , Triterpenes/pharmacology
6.
Curr Drug Metab ; 23(1): 21-29, 2022.
Article in English | MEDLINE | ID: covidwho-1883807

ABSTRACT

Platycodonis Radix (Jiegeng), the dried root of Platycodon grandiflorum, is a traditional herb used as both medicine and food. Its clinical application for the treatment of cough, phlegm, sore throat, pulmonary and respiratory diseases has been thousands of years in China. Platycodin D is the main active ingredient in Platycodonis Radix, which belongs to the family of pentacyclic triterpenoid saponins because it contains an oleanolane type aglycone linked with double sugar chains. Modern pharmacology has demonstrated that Platycodin D displays various biological activities, such as analgesics, expectoration and cough suppression, promoting weight loss, anti-tumor and immune regulation, suggesting that Platycodin D has the potential to be a drug candidate and an interesting target as a natural product for clinical research. In this review, the distribution and biotransformation, pharmacological effects, metabolic mechanism and safety evaluation of Platycodin D are summarized to lay the foundation for further studies.


Subject(s)
Saponins , Triterpenes , Biotransformation , Cough , Humans , Saponins/adverse effects , Saponins/metabolism , Triterpenes/adverse effects
7.
Eur J Med Chem ; 238: 114426, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1821218

ABSTRACT

The COVID-19 pandemic generates a global threat to public health and continuously emerging SARS-CoV-2 variants bring a great challenge to the development of both vaccines and antiviral agents. In this study, we identified UA-18 and its optimized analog UA-30 via the hit-to-lead strategy as novel SARS-CoV-2 fusion inhibitors. The lead compound UA-30 showed potent antiviral activity against infectious SARS-CoV-2 (wuhan-HU-1 variant) in Vero-E6 cells and was also effective against infection of diverse pseudotyped SARS-CoV-2 variants with mutations in the S protein including the Omicron and Delta variants. More importantly, UA-30 might target the cavity between S1 and S2 subunits to stabilize the prefusion state of the SARS-CoV-2 S protein, thus leading to interfering with virus-cell membrane fusion. This study offers a set of novel SARS-CoV-2 fusion inhibitors against SARS-CoV-2 and its variants based on the 3-O-ß-chacotriosyl UA skeleton.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Triterpenes , Virus Internalization , Antiviral Agents/pharmacology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Triterpenes/pharmacology , Virus Internalization/drug effects
8.
Front Endocrinol (Lausanne) ; 13: 845404, 2022.
Article in English | MEDLINE | ID: covidwho-1809370

ABSTRACT

The borderless transmission of coronavirus remains uncontrolled globally. The uncharted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant reduces the therapeutic efficacy of vaccines against coronavirus disease 2019 (COVID-19). Clinical observations suggest that tumour cases are highly infected with coronavirus, possibly due to immunologic injury, causing a higher COVID-19-related death toll. Presently, screening of candidate medication against coronavirus is in progress. Mogroside V, a bioactive ingredient of Siraitia grosvenorii, has been reported in China to have lung-protective and anticancer effects. The current study used network pharmacology and molecular docking to unlock the potential drug targets and remedial mechanisms of mogroside V against patients with ovarian cancer with COVID-19. We identified 24 related targets of mogroside V in patients with ovarian cancer and COVID-19 and characterised another 10 core targets of mogroside V against COVID-19 ovarian cancer, including Jun, IL2, HSP90AA1, AR, PRKCB, VEGFA, TLR9, TLR7, STAT3, and PRKCA. The core targets' biological processes and signalling pathways were revealed by enrichment analysis. Molecular docking suggested favourable docking between core target protein and mogroside V, including vascular endothelial growth factor A (VEGFA). These findings indicated that mogroside V might be a potential therapeutic agent in the mitigation of COVID-19 ovarian cancer.


Subject(s)
COVID-19 Drug Treatment , Ovarian Neoplasms , Female , Humans , Molecular Docking Simulation , Ovarian Neoplasms/drug therapy , SARS-CoV-2 , Triterpenes , Vascular Endothelial Growth Factor A
9.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1785837

ABSTRACT

The chemical composition and antimicrobial activity of propolis from a semi-arid region of Morocco were investigated. Fifteen compounds, including triterpenoids (1, 2, 7-12), macrocyclic diterpenes of ingol type (3-6) and aromatic derivatives (13-15), were isolated by various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and chiroptical methods. Compounds 1 and 3 are new natural compounds, and 2, 4-6, and 9-11 are newly isolated from propolis. Moreover, the full nuclear magnetic resonance (NMR) assignments of three of the known compounds (2, 4 and 5) were reported for the first time. Most of the compounds tested, especially the diterpenes 3, 4, and 6, exhibited very good activity against different strains of bacteria and fungi. Compound 3 showed the strongest activity with minimum inhibitory concentrations (MICs) in the range of 4-64 µg/mL. The combination of isolated triterpenoids and ingol diterpenes was found to be characteristic for Euphorbia spp., and Euphorbia officinarum subsp. echinus could be suggested as a probable and new plant source of propolis.


Subject(s)
Anti-Infective Agents , Diterpenes , Euphorbia , Propolis , Triterpenes , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Diterpenes/chemistry , Euphorbia/chemistry , Molecular Structure , Morocco , Propolis/pharmacology , Triterpenes/chemistry
10.
J Antibiot (Tokyo) ; 75(5): 258-267, 2022 05.
Article in English | MEDLINE | ID: covidwho-1728737

ABSTRACT

A series of lupane-, oleanane- and dammarane-based triterpenoids with 3ß-amino, A-ring azepano- and 3,4-seco-fragments has been synthesized and evaluated for antiviral activity against influenza A(H1N1) virus. It was found that azepanodipterocarpol 8 and 3ß-amino-28-oxoallobetulin 11 showed antiviral activity with IC50 1.1 and 2.6 µg ml-1, and selectivity index of 19 and 10, respectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Triterpenes , Antiviral Agents/pharmacology , Humans , Influenza, Human/drug therapy , Oleanolic Acid/analogs & derivatives , Triterpenes/pharmacology
11.
Pharmacol Res ; 178: 106138, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693034

ABSTRACT

Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18ß-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.


Subject(s)
Antineoplastic Agents , COVID-19 , Glycyrrhiza , Triterpenes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Humans , Phytochemicals , Plant Extracts , Triterpenes/pharmacology , Triterpenes/therapeutic use
12.
Biomed Pharmacother ; 147: 112658, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1641135

ABSTRACT

The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Phytochemicals/therapeutic use , Phytotherapy , Alkaloids/therapeutic use , Benzaldehydes/therapeutic use , Benzoquinones/therapeutic use , Caffeic Acids/therapeutic use , Cinnamates/therapeutic use , Depsides/therapeutic use , Ellagic Acid/therapeutic use , Humans , Quercetin/therapeutic use , SARS-CoV-2 , Thymol/therapeutic use , Triterpenes/therapeutic use
13.
Clin Nutr ESPEN ; 47: 414-417, 2022 02.
Article in English | MEDLINE | ID: covidwho-1591012

ABSTRACT

Ursolic acid (UA) is a pentacyclic terpenoid is usually found in the fruit peels and stem bark as secondary metabolites. UA has antiviral, antibacterial, and antiparasitic properties. UA has a wide spectrum of pharmacological activities against different infections. Because of the greatest antiviral and anti-inflammatory properties of UA, so it could be a plausible therapeutic herbal medicine in Covid-19 treatment. Covid-19 is a recent worldwide virulent disease pandemic due to severe acute respiratory coronavirus disease 2 (SARS-CoV-2). The pathogenesis of SARS-CoV-2 infection is related to the direct cytopathic effect and exaggerated immune response by which acute lung injury (ALI) and/or acute respiratory distress syndrome might be developed in critical cases. UA may inhibit main protease of SARS-CoV-2, and inhibits the interface flanked by SARS-CoV-2 viral proteins and its entry point commonly recognized as angiotensin converting enzyme 2 (ACE2). In addition, UA attenuates SARS-CoV-2-induced inflammatory reactions and oxidative stress. Therefore, UA could avert SARS-CoV-2 infection from causing ALI. This opinion proposed that UA might be a potential candidate therapy against Covid-19 and can mitigate post-Covid-19 complications such as lung fibrosis. In this regards, forthcoming studies are reasonable to substantiate the therapeutic role of UA in Covid-19. However, taken into account that Covid-19 is yet to be investigating for further evaluations, therefore, clinical trials are recommended regarding use and dose of UA in Covid-19 treatment, as well as secondary effects.


Subject(s)
COVID-19 Drug Treatment , Triterpenes , Humans , SARS-CoV-2 , Triterpenes/pharmacology
14.
Org Biomol Chem ; 19(33): 7186-7189, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1559295

ABSTRACT

Tetracyclic triterpenes and steroids are pharmacologically important molecules, and acetylation could improve their bioactivities. In this study, a highly regio- and stereo-specific acetyltransferase, AmAT19, was discovered from Astragalus membranaceus. AmAT19 could selectively catalyze the 6α-OH acetylation of four tetracyclic triterpenes and steroids. The strict selectivity is associated with different orientations of the 6α/ß-OH as indicated by molecular docking. Acetylated products 1a, 3a and 4a remarkably increased the inhibitory activity against the 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2, compared to 1, 3, and 4. AmAT19 could be a promising catalyst for specific 6α-OH acetylation to expand the molecular diversity of triterpenes and steroids.


Subject(s)
Acetyltransferases/metabolism , Astragalus Plant/enzymology , Steroids/metabolism , Triterpenes/metabolism , Acetylation , Catalysis
15.
J Adv Res ; 36: 201-210, 2022 02.
Article in English | MEDLINE | ID: covidwho-1536631

ABSTRACT

Introduction: The COVID-19 global epidemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a great public health emergency. Discovering antiviral drug candidates is urgent for the prevention and treatment of COVID-19. Objectives: This work aims to discover natural SARS-CoV-2 inhibitors from the traditional Chinese herbal medicine licorice. Methods: We screened 125 small molecules from Glycyrrhiza uralensis Fisch. (licorice, Gan-Cao) by virtual ligand screening targeting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Potential hit compounds were further evaluated by ELISA, SPR, luciferase assay, antiviral assay and pharmacokinetic study. Results: The triterpenoids licorice-saponin A3 (A3) and glycyrrhetinic acid (GA) could potently inhibit SARS-CoV-2 infection, with EC50 of 75 nM and 3.17 µM, respectively. Moreover, we reveal that A3 mainly targets the nsp7 protein, and GA binds to the spike protein RBD of SARS-CoV-2. Conclusion: In this work, we found GA and A3 from licorice potently inhibit SARS-CoV-2 infection by affecting entry and replication of the virus. Our findings indicate that these triterpenoids may contribute to the clinical efficacy of licorice for COVID-19 and could be promising candidates for antiviral drug development.


Subject(s)
COVID-19 , Glycyrrhiza , Triterpenes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Triterpenes/pharmacology
16.
Int J Mol Sci ; 22(22)2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1534090

ABSTRACT

Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.


Subject(s)
Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Triterpenes/chemistry , Tuberculosis/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , Drug Design , Drug Resistance, Bacterial/genetics , Humans , Molecular Docking Simulation , Molecular Structure , Mycobacterium tuberculosis/pathogenicity , Rifampin/pharmacology , Triterpenes/pharmacology , Tuberculosis/genetics , Tuberculosis/microbiology
17.
BMC Pulm Med ; 21(1): 371, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1526622

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a kind of chronic lung diseases with the characteristics of airway remodeling and airflow obstruction. Magnesium isoglycyrrhizinate (MgIG) is an anti-inflammatory glycyrrhizic acid preparation for treating hepatitis. However, whether MgIG can treat other diseases and its action mechanism is still obscure. In this study, we evaluated the anti-inflammatory effect of MgIG in rats with COPD and investigated the underlying mechanisms. METHODS: Rat model of COPD was constructed by endotracheal-atomized lipopolysaccharide exposure and cigarette smoke induction. Rats were randomly divided into 5 groups: control group, COPD model group, salmeterol fluticasone comparator group, low dose of MgIG group, and high dose of MgIG group. Except for normal control group, the other four groups received sensitization treatment by cigarette smoking and endotracheal-atomization of endotoxin lipopolysaccharide to construct COPD rats model. After model established successfully, the COPD rats in each group received corresponding dose of endotracheal-atomized normal saline, salmeterol fluticasone, and MgIG every day prior to exposure of cigarette smoke from days 30 to 45. Normal control group were treated with normal saline. Finally, All rats were euthanatized. Pulmonary function was measured. Cells in bronchoalveolar lavage fluid were classified, inflammatory factors IL-6 and TNF-α were determined, histopathological analysis was performed by HE staining, and expression of NLRP3 and cleaved caspase-1 in the lung tissue was also determined by Western blotting. RESULTS: It showed that MgIG treatment (0.40 or 0.80 mg/kg/day) could recover the weight and the clinical symptoms of rats with COPD, accompanied with lung inflammation infiltration reduction, airway wall attenuation, bronchial mucus secretion reduction. Additionally, MgIG administration reduced inflammatory cells (white blood cells, neutrophils, lymphocytes and monocytes) accumulation in bronchoalveolar lavage fluid and decreased IL-6 and TNF-α production in the serum of COPD rats. Furthermore, MgIG treatment also reduced the expression level of NLRP3 and cleaved caspase-1. CONCLUSION: It indicate that MgIG might be an alternative for COPD treatment, and its mechanism of action might be related to the suppression of NLRP3 inflammasome.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Saponins/pharmacology , Triterpenes/pharmacology , Animals , China , Inflammation/prevention & control , Lung/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Disease, Chronic Obstructive/pathology , Rats , Rats, Wistar , Smoking
18.
Cell Rep ; 37(2): 109806, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1466094

ABSTRACT

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Subject(s)
Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Animals , Benzofurans/pharmacology , Cell Line, Tumor , Eukaryotic Initiation Factor-4A/drug effects , Eukaryotic Initiation Factor-4A/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Primary Cell Culture , Protein Biosynthesis/physiology , Proteomics/methods , Ribosomes/metabolism , Transcriptome/drug effects , Transcriptome/genetics , Triterpenes/pharmacology
19.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1463709

ABSTRACT

Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18-1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4',6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Triterpenes/pharmacology , Angiogenesis Inhibitors , Antineoplastic Agents/chemistry , Binding Sites , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Triterpenes/chemistry
20.
Nat Prod Res ; 36(16): 4276-4281, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1429082

ABSTRACT

The present pandemic disease COVID-19 demands an urgent need for more efficient antiviral drugs against SARS-CoV-2. 22-Hydroxyhopane is a bioactive triterpenoid compound with antibacterial activity, present in the leaves of Adiantum latifolium. In this study, molecular docking method revealed strong binding affinity of the compound for ten proteins essential for SARS-CoV-2 multiplication in host cells, including seven nonstructural proteins, two structural proteins and one receptor protein, with a binding energy of -7.61 to -9.82 kcal/mol and inhibition constant <1 µM. MDS and MM-PBSA analysis of the best ranked complex further confirmed the results. The targets selected include six enzymes, RNA binding protein, spike protein, membrane protein and ACE2 receptor of SARS-CoV-2. It is the first report of a natural compound from A. latifolium having multitargeted activity against SARS-CoV-2. We conclude that 22-hydroxyhopane may be used as a best source for the development of novel therapeutic drugs for COVID-19, but requires further evaluations.


Subject(s)
Adiantum , COVID-19 Drug Treatment , Triterpenes , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL